求array中出现次数最多的元素
np.argmax(np.bincount(c))
求array中的nan值
np.isnan((c)).any()
pandas中转换行列的类型
to_numeric()
- provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See alsoto_datetime()
andto_timedelta()
.)astype()
- convert (almost) any type to (almost) any other type (even if it’s not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).infer_objects()
- a utility method to convert object columns holding Python objects to a pandas type if possible.convert_dtypes()
- convert DataFrame columns to the “best possible” dtype that supportspd.NA
(pandas’ object to indicate a missing value).
获取DataFrame中的某个元素的值
You can use boolean indexing
with DataFrame.loc
for filter by condition and by column name:
s = df.loc[df['instrument_token'].eq(12295682), 'tradingsymbol']
# alternative
s = df.loc[df['instrument_token'] == 12295682, 'tradingsymbol']
And then get first value of Series
:
a = s.iat[0]
a = s.iloc[0]
a = s.tolist()[0]
a = s.to_array()[0]
# general solution if not match condition and select first value failed
a = next(iter(s), 'no match')
Another idea is use DataFrame.set_index
fo index by column instrument_token
:
df = df.set_index('instrument_token')
Anf then select by DataFrame.loc
or DataFrame.at
:
a = df.loc[12295682, 'tradingsymbol']
a = df.at[12295682, 'tradingsymbol']
Python打印时间
# 格式化成2016-03-20 11:45:39形式
print (time. strftime(" %Y-%m-%d %H:%M:%S' ,time. localtime()))
# 格式化成Sat Mar 28 22:24:24 2016形式
print (time. strftime("%a %b %d %H:%M:%S %Y",time. localtime()))